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Abstract

Formal specifications of required system behavior can
be analyzed, verified, and validated, giving high confidence
that the specification captures the desired behavior. Trans-
ferring this confidence to the system implementation de-
pends on a formal link between requirements and imple-
mentation. The automatic generation of provably correct
code provides just such a link. While optimization is usu-
ally performed on code to achieve efficiency, we propose
to optimize the formal specification before generating code,
thus providing optimization independent of the particular
code generation method. This paper investigates the use of
invariants in optimizing code generated from formal speci-
fications in the Software Cost Reduction (SCR) tabular no-
tation. We show that invariants (1) provide the basis for
simplifying expressions that otherwise cannot be improved
using traditional compiler optimization techniques, and (2)
allow detection and elimination of parts of the specification
that would lead to unreachable code.

1. Introduction

Formal requirements specifications are useful because
they can be analyzed to show that they satisfy critical prop-
erties such as safety, security, and timeliness. Additionally,
with executable specifications, the user may symbolically
execute the system to validate that the specification captures
the intended system behavior. Thus, analysis and simulation
can provide confidence that a specification is correct. Trans-
ferring this confidence to the implementation requires a for-
mal link between requirements and implementation. This
formal link may be realized by a sequence of (usually) man-
ual refinements, but the automatic generation of provably
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correct code provides the highest confidence that the code
captures the specified behavior. We have shown in previous
work [21] how to construct code from requirements speci-
fied in the Software Cost Reduction (SCR) tabular notation.
The development of high-quality SCR requirements speci-
fications is supported by a suite of editing and verification
tools designed and developed by the Naval Research Labo-
ratory. Automatic code synthesis is consistent with our SCR
toolset design philosophy, the goal of which is to automate
(as much as possible) the process of system specification,
analysis, and implementation using tools and methods de-
signed for practicing engineers.

Both speed and code size are important in code for em-
bedded systems. Compilers generally perform optimiza-
tions for speed, while code size optimization is often done
by hand on either the source code or the compiled code [28].
Rather than perform optimizations only on the code itself,
our approach is to translate the formal specification into an
equivalent form that will lead to smaller, and frequently
faster, code than the original specification, thus providing
optimization independent of the particular code generation
method. This will then be followed by more typical opti-
mizations on the code. This paper investigates the use of
requirements level invariants in optimizing code generated
from executable formal requirements specifications repre-
sented in the SCR tabular notation. Invariants are proper-
ties that hold in every reachable state of such an executable
system. In previous work, we have developed algorithms
for automatically generating invariants [16, 17]; these and
other invariants that have been established can be used with
our techniques.

To illustrate our notion of optimization, we consider a
simple state machineΣ with state set{x1, x2}. Associated
with Σ is a variableX, whose value represents the current
state ofΣ, and Boolean variablesA andB. The machine
Σ changes state based on (and in parallel with) changes in
A andB. Here and below, we follow the standard conven-
tion in which unprimed variables represent values prior to a



transition and primed variables represent values after a tran-
sition.

x1 x2
A ¬A /\ A′

A /\ ¬A′

B /\ ¬B′ /\ A

Figure 1. Simple Example State Machine

Figure 1 indicates that, wheneverΣ enters statex1, A
holds. This is because (1) inΣ’s initial statex1, A holds,
and (2)A holds after the machine enters statex1 from state
x2; this follows from the label¬A ∧ A′ on the (unique)
transition from statex2 to statex1 and the convention on
primes. Also from Figure 1, if whileΣ is in statex1, A
changes fromtrue to false (i.e.,A ∧ ¬A′), then the ma-
chine exits statex1. (We assume a semantics that forces
a transition whenever one is possible, even if the choice is
nondeterministic.) Given this, it is easy to show thatA al-
ways holds when the machine is in statex1, or, in other
words, the expression(X = x1) ⇒ A is invariant. In fact,
a generalization of this observation is the basis for our algo-
rithms for invariant generation [16, 17].

Notice that, in statex1, if B changes fromtrue to false,
andA holds before this change (i.e.,B ∧ ¬B′ ∧ A holds),
then the machine enters statex2. However, it is redundant
to check thatA holds as part of the evaluationB ∧¬B′ ∧A
sinceA always holds in statex1 due to the invariant prop-
erty given above. Thus, we may simplify the expression
labeling this transition toB ∧ ¬B′ to avoid checkingA.

The transitions illustrated by Figure 1 may be expressed
in a tabular format as follows:

source state guard target state

x1 A ∧ ¬A′ x2

x1 B ∧ ¬B′ ∧A x2

x2 ¬A ∧A′ x1

The SCR method uses similar tables to define state machine
transitions. The above table is a compact representation of
the function definingX ′, the value of variableX in the new
state. The standard mathematical definition of the function
is more complex:

X ′ =


x2 if X = x1 ∧ ((A ∧ ¬A′) ∨ (B ∧ ¬B′ ∧A))

x1 if X = x2 ∧ (¬A ∧A′)
X otherwise

The simplification performed above can be used to in-
duce a transformation of the table. The cells comprising

the guard column of the table are the focus of our sim-
plifications. We are able to perform the simplification be-
cause (1) the system is in statex1 (i.e.,X = x1), (2) the
invariant (X = x1) ⇒ A always holds, and (3) the pre-
vious two facts together imply thatA holds. If we take
K = (X = x1) ∧ (X = x1 ⇒ A) to be thecontextof
the cell containing the expressionB ∧ ¬B′ ∧ A, then our
simplification may be expressed as follows.

If K is the context for a cell containing the expres-
sionE andK ⇒ A then,A may be replaced by
true in E.

A generalization of the above rule to replace any subex-
pression (rather than just the Boolean variableA) is one of
the simplification rules that we have developed. However,
the simplification is not yet complete because this rule says
thatB ∧ ¬B′ ∧ A is transformed intoB ∧ ¬B′ ∧ true.
Transforming this expression toB ∧¬B′ is trivial; we sim-
plify using the identityP ∧ true⇔ P . In the general case,
we apply this and other standard Boolean simplifications.
Transforming the table as described results in a table with a
simplified middle row:

source state guard target state

x1 ¬A′ x2

x1 B ∧ ¬B′ x2

x2 ¬A ∧A′ x1

Note that the simplification rule with the same context has
also been applied to remove the termA from the guard cell
of the first line of the table.

This simple example illustrates that invariants can pro-
vide the basis for simplifying expressions that cannot be fur-
ther simplified without use of those invariants. Such modi-
fications are a form ofcontextual simplification, analogous
to contextual rewriting [35], since they involve the use of a
context of known facts to aid in the simplification. In addi-
tion to the generalization of the above rule, we also develop
rules for detecting and eliminating parts of the specifica-
tion that would lead to unreachable code. Our general ap-
proach is to apply a convergent set of contextual simplifica-
tion rules, each application of which may require additional
non-contextual simplification.

While this paper considers only a set of simple rules for
simplifying propositional formulas, we are in the process of
investigating more sophisticated techniques to include ac-
tual algorithms for doing these optimizations, as well as ex-
tension to contextual simplification of a more general nature
(e.g., simplification of arithmetic expressions).

Section 2 provides background on SCR and on invari-
ants that can be automatically derived from SCR specifi-
cations. Section 3 explains how invariants may be used to



simplify SCR tables by removing portions of the specifica-
tion that would lead to unnecessary or dead code. Examples
are given to illustrate the utility of invariants in this process.
Section 4 discusses related work. Section 5 presents con-
clusions and ideas for future work.

2. Background

Originally formulated to document the requirements of
the flight program of the U.S. Navy’s A-7 aircraft [14], the
SCR requirements method is designed to support detection
and correction of errors during the requirements phase of
software development [13, 9]. The SCR toolset provides
a user-friendly approach to writing requirements specifica-
tions in a tabular format and a number of analysis tools,
including a consistency checker [13], a simulator [12], a
model checker [10], theorem provers [2, 4], and an invariant
generator [16, 17]. By applying the SCR tools to uncover
errors, a user can develop high confidence that a specifica-
tion correctly captures the required system behavior.

The SCR method has been used successfully by many
organizations in industry and in government (e.g., Bell Lab-
oratories [15], Grumman [26], Lockheed [7], the Naval
Research Laboratory [10, 20], Ontario Hydro [31], and
Rockwell Aviation [27]) to develop and analyze specifi-
cations of practical systems, including flight control sys-
tems [7, 27], weapons systems [10], space systems [6], and
cryptographic devices [20]. Most recently, the SCR tools
were used, together with a test case generator, by Lockheed
Martin to detect a critical error described as the “most likely
cause” of a $165 million failure in the software controlling
landing procedures in the Mars Polar Lander [5].

2.1 SCR Requirements Model

In SCR the required system behavior is defined in terms
of monitored and controlled variables, which represent
quantities in the system environment that the system mon-
itors and controls. The environment nondeterministically
produces a sequence of monitored events, where amoni-
tored eventsignals a change in the value of some monitored
variable. The system, represented in the model as a state
machine, begins execution in some initial state and then re-
sponds to each monitored event in turn by changing state.
In SCR the system behavior is assumed to besynchronous:
the system completely processes one set of inputs before
processing the next set. Furthermore, theOne Input As-
sumptionallows at most one monitored variable to change
from one state to the next.

To specify the required behavior concisely, the SCR
model contains two types of auxiliary variables:mode
classes, whose values are calledmodes, and terms. Each

mode is an equivalence class of system states useful in spec-
ifying as well as understanding the required system behav-
ior. A term is a state variable defined by an expression over
monitored variables, mode classes, or other terms. Mode
classes and terms often capture history—the changes that
occurred in the values of the monitored variables—and help
to make the specification more concise.

The SCR model represents a system as a state machine
Σ = (S, S0, E

m, T ), whereS is the set of states,S0 ⊆ S
is the set of initial states,Em is the set of monitored events,
andT is the transform describing the allowed state transi-
tions [13]. In our model, the transformT is a function that
maps a monitored evente ∈ Em and the current states ∈ S
to the next states′ ∈ S. Further, astateis a function that
maps eachstate variable, i.e., each monitored or controlled
variable, mode class, or term, to a type-correct value; acon-
dition is a predicate defined on a system state, and anevent
is a predicate requiring that two consecutive system states
differ in the value of at least one state variable.

The notation “@T(c) WHEN d” denotes aconditioned
event, which is defined by

@T(c) WHEN d
def= ¬c ∧ c′ ∧ d,

where the unprimed conditionsc andd are evaluated in the
current state and the primed conditionc′ is evaluated in the
next state. The event@T(c) WHEN doccurswhen its
defining expression evaluates totrue. We also define

@F(c)
def= @T (¬c).

2.2 The SCR Tables

The transformT is a composition of smaller functions
called table functions, which are derived from the condi-
tion tables, event tables, and mode transition tables in SCR
requirements specifications. These tables define the values
of thedependent variables—the controlled variables, mode
classes, and terms. ForT to be well-defined, no circular de-
pendencies are allowed in the definitions of the dependent
variables. The variables are partially ordered based on the
dependencies among the next state values.

Each table defining a term or controlled variable is ei-
ther a condition table or an event table. Acondition ta-
ble associates a mode and a condition in the next state with
a variable value in the next state, whereas anevent table
associates a mode and a conditioned event with a variable
value in the next state. Each table defining a mode class
is amode transition table, which associates a source mode
and an event with a target mode. Our formal model requires
the information in each table to satisfy certain properties,
guaranteeing that each table describes a total function [13].
Some SCR tables may be modeless, i.e., they define the
value of a variable without referring to any mode class.



Old Mode Event New Mode

TooLow @T(WaterPres ≥ Low) Permitted

Permitted @T(WaterPres ≥ Permit ) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit ) Permitted

Table 1. Mode Transition Table for Pressure .

Mode Conditions

High , Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table 2. Condition Table for Safety Injection .

To illustrate the SCR tabular notation, three example ta-
bles are presented. These tables define the values of the
three dependent variables in a simplified version of a safety
injection system (SIS) [13] for a nuclear power plant. The
SIS system monitors water pressure, and if the pressure is
too low, the system injects coolant into the reactor core.

Table 1 is a mode transition table defining the new value
of the mode classPressure as a function of the current
mode and the monitored variables. For example, the first
row of the table states that if the current mode isTooLow
and the water pressure becomes greater than or equal to the
Low threshold, the new mode isPermitted.

Table 2 is a condition table defining the value of
the controlled variableSafety Injection as a function
of the modes and the term variableOverridden. The
first row states that in theHigh or Permitted modes,
Safety Injection is Off. The second row states
that in the modeTooLow, if Overridden is true then
Safety Injection is Off, and if Overridden is false
thenSafety Injection is On.

Table 3 is an event table defining the termOverridden
as a function of the current mode and the monitored vari-
ables. The first row describes the behavior when the mode
of the system (i.e., the value ofPressure in the old state)
is eitherTooLow or Permitted. In either of these modes, if
Block switches toOn when Reset is Off, then the new
value of Overridden is true, but if the Pressure be-
comesHigh or Reset switches toOn, then the new value
of Overridden is false.

2.3 Invariants and Code Generation

We consider two forms of invariants in SCR:state in-
variants, expressions over a single state that hold in each
reachable state of the system, andtransition invariants, ex-
pressions over two states that hold for each reachable pair

of consecutive states. We have designed two algorithms
[16, 17] for constructing state invariants from the tables
defining the dependent variables in an SCR specification.
Suppose that dependent variabler has values in a finite set
{v1, v2, ..., vn}. If the value ofr is defined by a mode transi-
tion table or an event table, then, for eachvi, the algorithms
generate invariants of the form

r = vi ⇒ Ci,

whereCi is a predicate over the variables inΣ on whichr
depends. Invariant generation from SCR tables is based on
the following idea: In an SCR specification,r = vi ⇒ Ci is
an invariant if 1)Ci is always true whenr’s value changes
to vi, and 2) an event falsifyingCi unconditionally causesr
to have a value other thanvi. Since stronger invariants may
be computed with knowledge of previously computed in-
variants, the full algorithms repeat the computations of the
invariants until a fixpoint is reached. The current implemen-
tation of the SCR invariant generator applies our algorithms
to both mode transition tables and event tables. State in-
variants constructed from a mode transition table are called
mode invariants.

We have also developed two prototype code synthesiz-
ers that construct C source code from an SCR requirements
specification [21]. The two synthesizers, each using a dif-
ferent code generation strategy, are based on Paige’s APTS
program transformation system [30]. The first strategy uses
rewrite rules to transform the parse tree of an SCR specifi-
cation into a parse tree for the corresponding C code. The
second strategy associates a relation with each node of the
specification parse tree. Each member of this relation acts
as an attribute, holding the C code corresponding to the tree
at the associated node; the root of the tree has the entire C
program as its member of the relation. The generated code
is efficient but has not been optimized.



Mode Pressure Events

TooLow, @T(Block = On) @T(Pressure = High ) OR
Permitted WHEN Reset = Off @T(Reset = On)

High False @F(Pressure = High )

Overridden True False

Table 3. Event Table for Overridden .

Overridden ′ =



true if @T(Block =on) WHEN Reset =off

AND Pressure in {TooLow, Permitted }
false if @T(Pressure =High ) OR @T(Reset =on) WHEN

Pressure in {TooLow, Permitted }
OR@F(Pressure= High) WHEN Pressure=High

Overridden otherwise

Figure 2. Functional Definition of Overridden Event Table.

3. Simplifying SCR Tables Using Invariants

This section presents two simplification rules that make
use of invariants: (1) a rule to remove unreachable parts of
the specification and (2) another rule to remove redundant
parts of the specification. Since invariants are properties
that hold in any reachable state, invariants may be used to
simplify the expression of the next state function, the func-
tion from which code is ultimately generated. Note that,
to simplify an expressionE, it is not sufficient to simply
conjoin the invariants withE and apply some simplification
procedure, because this might entail the simplification of
bothE and the invariants, when all we want to simplify is
E itself. Thus, some form of expression simplification that
uses the invariants as context is desired.

3.1. Contexts

For each cell to be simplified, several different forms of
information may be assumed as context: the current value
of the associated mode class, a constraint on the old value
of the variable being defined in the table, and the set of in-
variants. However, for a technical reason (as explained in
the appendix) the contextual information involving the old
value of the variable may only be used as context for the
Rule Remove-Unreachable.

A. THE MODE CLASS (Both Rules): Usually an
event table in SCR has an associated mode classM ; that
is, the value of the variable defined by the table is described
as a function of that mode class and an event. Except for
mode-less event tables, the mode in the old state can be used
as part of a cell’s context. For mode transition tables, the
value of the mode in the old state can be used as context for
the cell in the corresponding event column. For example,

in Table 3 the mode context for the cell “@F(Pressure
= High )” obtained from the associated mode class Pres-
sure is “Pressure = High ,” while the mode context for
the cell in row 2 in Table 4 on page 7 is “CruiseMode =
Inactive .”

B. CONSTRAINT ON THE OLD VALUE (Rule
Remove-Unreachable Only): For an event table, a con-
straint on the old value of the variable being defined can also
be used as part of the context of a cell. Event tables have
a default “no change” condition, meaning that for a given
cell, we only need to consider the value of the variable if
the actual value of the variable changes. This is supported
by the following property related to the formal definition of
tables as given in [13], of which Figure 2 is an example.

Property 1 For a variabler having the set of possible val-
ues{v1, . . . , vn}, the function definition

r′ =


v1 if P1

. . . . . .

vn if Pn

r otherwise

is equivalent to the definition

r′ =


v1 if P1 ∧ r 6= v1

. . . . . .

vn if Pn ∧ r 6= vn

r otherwise

if the set{P1, P2, ..., Pn} satisfies Disjointness, i.e.i 6=
j ⇒ ¬(Pi ∧ Pj) for all 1 ≤ i, j ≤ n.



This property also holds when only conjoiningr 6= vi for
some subset of thePi rather than all of thePi. Thus for
each cell in the definition of the new valuer′ defined by
an event table we have the contextr 6= v wherev is the
value below the double line at the bottom of the column
containing that designated cell. For example, in Table 3 this
gives the context for the “@F(Pressure = High )” cell as
“Overridden 6= false.”

C. THE INVARIANTS (Both Rules) : Though any state
invariant ofΣ can be used as context, this paper only con-
siders mode invariants, i.e., state invariants of the form
M = mi ⇒ Qi, whereM is a mode class name andQi
is a predicate defined on state variables ofΣ.

3.2. Simplification Rules

For an intuitive presentation of our simplification tech-
niques using invariants, we express the simplifications in
terms of transformations of the cells of an SCR table. A
tool implementing these simplifications would define these
transformations directly in terms of the conditional expres-
sions defining the semantics of each table, but the results
would be equivalent. For example, consider the event table
in Table 3. This table, which is adapted from the SCR spec-
ification of a safety injection system [13], describes how
the value of the variableOverridden is updated. The se-
mantics of Table 3 is given as the conditional expression of
Figure 2.

Our simplifications apply to cells containing the event
expressions occurring in event tables (e.g. the cells above
the double line with header “Events” in Table 3) and mode
transition tables (the cells with the header “Event” in Ta-
ble 4). As a special case a cell may containfalse, meaning
that the case is impossible. Our simplifications arecontex-
tual in the sense that we shall simplify cells in the context of
the given invariants plus additional facts as described above.
In this paper, we present only two rules, both defined over a
logical expressionK, the context of a cell, andE, the event
expression contained in that cell.

Context for Remove-Redundancy: K = (M =
m) ∧ I, where (a)m is the old value of the mode
classM associated with the cell, (b)I is some
state invariant (in the old state).

Rule Remove-Redundancy: If E is an expres-
sion containing a subexpressionQ for a cell as-
sociated with mode valuem, andK ⇒ Q is a
tautology, thenE may be simplified by replacing
each occurrence ofQ within E with true.

Intuitively, this rule says that if cellE is being evalu-
ated in a context where bothK andQ are true, then ef-

fectively the value ofE is unchanged by treating each oc-
currence ofQ astrue. If applying this rule simplifiesE,
one would naturally further simplifyE using standard sim-
plification algorithms. In this paper, we shall only apply
Remove-Redundancy to mode transition tables.

Context for Remove-Unreachable: K = (M =
m) ∧ I ∧ (r 6= v), where (a)m is the old value
of the mode classM associated with the cell con-
tainingE, (b) I is some state invariant (in the old
state), and (c)v is the new value ofr associated
with the cell.

Rule Remove-Unreachable: If K ∧E ⇒ false
is a tautology, thenE may be replaced byfalse.

Obviously, if the context isfalse, then the transition as-
sociated with this cell will never occur. Replacing the cell
entry withfalse results in a clearer and more concise spec-
ification.

Next, we illustrate several simplifications using Rule
Remove-Redundancy. Table 4 shows the mode transition
table for a Cruise Control system [11]. Applying our previ-
ously developed invariant generation algorithms, produces
the following two invariants for the cruise control specifica-
tion: (1) CruiseMode = Inactive ⇒ IgnOn and (2)
CruiseMode = Override ⇒ IgnOn ∧EngRunning .
Consider Row 3 of Table 4 and letE be the event expres-
sion from this row. LetI be the invariant (1) and take the
contextK to beI together with the mode context for this
row, CruiseMode = Inactive . Together these two
parts of the context implyIgnOn . Applying Rule Remove-
Redundancy withQ = IgnOn eliminates “And IgnOn ”
from the end of the event expression in the cell (marked in
italics). Code generated from the simplified table will be
smaller and faster than code generated from the original ta-
ble. Similarly, we can simplify line 9 of the mode transition
table using invariants (1) and (2) to remove the expression
“And IgnOn And EngRunning ” (shown in italics).

Finally, we illustrate how applying Rule Remove-
Unreachable will lead to elimination of a row of Table 3.
This corresponds to elimination of a part of the specifica-
tion that would produce dead code during synthesis. Let
E be the cell containing @F(Pressure = High ) in the
event table given in Table 3 and letI be Pressure =
High ⇒ Overridden = false , one of the gener-
ated state invariants for this system. Let the contextK
be the invariantI together with the mode class informa-
tion, Pressure =High , and the old state value informa-
tion,Overridden 6= false . The three constraints of the
contextK taken together simplify tofalse; and thus by the
Rule Remove-Unreachable the cell itself can be replaced by
false. Because all the cells in the second row of the table
now arefalse, the entire row of the table can be eliminated.



Old Mode Event New Mode

1 Off @T(IgnOn ) Inactive

2 Inactive @F(IgnOn ) Off

3 Inactive @T(Lever = const ) WHEN EngRunning Cruise
AND NOT Brake AND IgnOn

4 Cruise @F(IgnOn ) Off

5 Cruise @F(EngRunning ) Inactive

6 Cruise @T(Brake ) OR @T(Lever = off ) Override

7 Override @F(IgnOn ) Off

8 Override @F(EngRunning ) Inactive

9 Override @T(Lever = resume ) OR @T(Lever = const ) WHEN Cruise
NOT Brake AND IgnOn AND EngRunning

Table 4. Mode Transition Table for Mode Class Variable CruiseMode.

The more compact table is shown in Table 5. The new table
will produce less code during synthesis because it omits the
part of the table that would lead to the construction of dead
code.

There is one special case of Remove-Unreachable that
bears mention. If there is an invariant of the formM = m⇒
false, any row of a table havingM = m as the mode class
context can be eliminated from the table. This one-step opti-
mization is equivalent to a series of applications of Remove-
Unreachable (one for each cell in the row), resulting in a
row of cells having the valuefalse, followed by the elimi-
nation of the row.

4. Related Work

The language LUSTRE [8], developed at VERIMAG, is
conceptually similar to the SCR language: it provides a de-
terministic language, in which all non-input variables are
simultaneously updated in response to some change in the
input environment. Efficient code generation is an integral
part of the LUSTRE toolset, and is based on the use of a
“control automaton” that remembers a limited part of the
old state of the system. The VERIMAG group has also ex-
tended LUSTRE into the hardware area by adding syntac-
tic sugar for array structures and circuit layout information,
which the Pollux tool uses to automatically configure the
hardware gates in Programmable Active Memory [34].

Early work on logical simplification in the 1950’s
and 1960’s addressed Boolean minimization with respect
to some measure (such as fewest number of literals in
sum-of-products form) resulting in the well-known Quine-
McCluskey method [33, 25]. Later developments extended
simplification over first-order theories with interpreted sym-
bols: Loveland and Shostak [24] extended Quine’s method
of prime implicants, while Zhang [36] gives a general
framework for simplification viacontextual rewriting, i.e.,
rewriting formulae in the context of additional information.

This latter work has been extended to consider use of deci-
sion procedures in manipulating the context during rewrit-
ing [3]. The most sophisticated of these techniques have
resulted in implementations of powerful theorem provers,
e.g., SIMPLIFY, which is based on the work of Nelson [29].
The two rules we have given are special cases of contex-
tual rewriting as originally defined by Remy [35], who first
coined the terminology “contextual rewriting.”

Complementing the early work on logic simplification in
the 1950’s and 1960’s was the development of techniques
for machine simplification, e.g., the minimization of the
number of states of incompletely specified finite state ma-
chines [32]. The monograph by Kam et al. gives a modern
perspective on this subject [18].

Invariants have been used for optimization during code
generation for many years, but for the most part such in-
variants are related to implementation details rather than re-
quirements level invariants of reactive, embedded systems
that we generate from SCR specifications. For example,
“loop invariants” about the relative values of variables in
a loop are used during the classic strength-reduction com-
piler optimization technique [1] and the finite differencing
program transformation technique [30]. More recent work
on strengthening such invariants has led to additional op-
timization as well as providing a more general approach
called incrementalization [23]. Another application of in-
variants during code generation, but at a higher level akin
to requirements, is the technique of run-time code genera-
tion [22, 19]. In this method, specialized code is generated
at run-time, given invariants based upon the known input
values for a specialized (often one-time) use of a program.

In our simplification of the cells of a table, we use the old
state value of the variable as means of restricting the calcu-
lation of the variable’s new value to only the cases where
there is to be a change from the old value of the variable.
This check of the old value of the variable could also be
generated as part of the synthesized code. If the check were



Mode Events

TooLow, @T(Block = On) @T(Pressure = High ) OR
Permitted WHEN Reset = Off @T(Reset = On)

Overridden True False

Table 5. Simplified Event Table for Overridden .

Overridden ′ =


true if @T(Block =on) WHEN Reset =off

AND Pressure in {TooLow, Permitted }
false if @T(Pressure =High ) OR @T(Reset =on) WHEN

Pressure in {TooLow, Permitted }
Overridden otherwise

Figure 3. Functional Definition of Simplified Overridden Event Table.

generated such that it was a preliminary check before the
rest of the calculations were performed, it would optimize
the code by preventing unnecessary calculations. This sort
of incremental update to the variable (i.e., basing its new
value upon its old value) as well as the LUSTRE control
automaton approach to compilation are similar to finite dif-
ferencing [30].

5. Conclusions and Future Work

Though at a preliminary stage, the work reported in this
paper shows that some benefit can be derived from using in-
variants to simplify SCR specifications. In future work, we
plan to implement a tool that applies more general invari-
ants (to include transition invariants) to simplify SCR ta-
bles using algorithms that support contextual simplification
in the more general setting of interpreted first-order theo-
ries, (e.g., arithmetic expressions, enumeration expressions,
etc.). While the simple idea of a cell and its context pro-
vide an intuitive framework for explaining the optimization
of SCR specifications, the implementation will perform the
optimizations directly on the underlying functional defini-
tions. The output of this tool will then be used as input for
our previously developed code synthesizers, allowing us to
produce code that has been optimized. We plan to perform
experiments to determine the amount of improvement the
optimizations provide for typical SCR specifications. We
also plan to implement the finite differencing optimization
described in Section 4.
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A. Soundness

We have formally proved that both rules are sound, each
with its own particular definition of context. Although these
rules appear to be quite simple, careful attention to the al-
lowable context is required. It would seem intuitive that the
constraint on the old value of the variablev could be used
as context with Rule Remove-Redundancy since a transfor-
mation via Property 1 preserves the function. But this is
unsound: it is easy to find an SCR table for which applica-
tion of Rule Remove-Redundancy with the constraintr 6= v
as part of the context introduces nondeterminism.

We now present the proof of the soundness of Rule
Remove-Unreachable for an event table. The proof is for
the more general case of application of the rule to all cells
simultaneously. To avoid clutter we suppress explicit men-
tion of the state. We consider the semantics of an event table
defining the new value of a state variabler as a conditional
expression:

Fr =


v1 if G1

... ...

vn if Gn

r otherwise



where the set of guardsGi
def
= (M = mi) ∧ Ei, i =

1, . . . , n are mutually disjoint; this ensures that this con-
ditional form represents a function.

For everyi, the Remove-Unreachable context forEi is

Ki = (M = mi) ∧ Ii ∧ (r 6= vi)

whereIi is some state invariant, which may be chosen dif-
ferently for eachi. Recall:

Rule Remove-Unreachable: If (Ki ∧ Ei) ⇒
false is a tautology, then replaceEi with false.

After applying this rule for everyi, we have a new definition
F ∗r , with eachGi in the definition ofFr replaced byG∗i ,
where

G∗i = (M = mi) ∧E∗i , (1)

in which

E∗i =

{
false if (Ki ∧Ei)⇒ false

Ei otherwise.
(2)

Note that (1) and (2) together imply thatG∗i ⇒ Gi.
For F ∗r to define a well-formed table function, theG∗i

must be mutually disjoint. But this fact is easily established
since the only modification toFr is to (possibly) replace
some of theEi by false.

Theorem 1 Semantically, with respect to the reachable
states of the system,Fr ≡ F ∗r .

Proof: In our proof, we may assume that all evaluation
takes place in a reachable state.

The definition ofF ∗r expands to

r′ =


v1 if G∗1
. . . . . .

vn if G∗n
r otherwise

(3)

and the definition ofFr expands to

r′ =


v1 if G1

. . . . . .

vn if Gn

r otherwise.

(4)

We must show that the values of these two case expressions
are equal. We need only consider two cases.

CASE [∀i : ¬G∗i ]: In this case, the conditional expres-
sion in (3) evaluates tor. Using Property 1 on page 5 we
can rewrite the conditional expression in (4) to:


v1 if G1 ∧ (r 6= v1)

. . . . . .

vn if Gn ∧ (r 6= vn)

r otherwise.

(5)

To show that this expression also evaluates tor, it suf-
fices to show

∀i : ¬(Gi ∧ (r 6= vi)) (6)

holds. But if (6) is false then there is somei such that
Gi ∧ (r 6= vi) holds. In this case,r 6= vi, and sinceGi
holds, we also haveM = mi andEi. Further,Ii holds
because state invariants hold in any reachable state. There-
fore, we know thatKi = (M = mi) ∧ Ii ∧ (r 6= vi)
holds. Thus,Ki ∧ Ei holds, which means thatKi ∧ Ei ⇒
false does not hold. From this, we knowE∗i = Ei
(by (2)), and hence,G∗i = Gi (by (1)). BecauseGi
holds,G∗i also holds. But this contradicts the assumption
∀i : ¬G∗i . Therefore, we have established (6).

CASE [∃i : G∗i ]: Choosei such thatG∗i holds. Then
the case expression in (4) evaluates tovi. SinceG∗i ⇒ Gi,
Gi also holds. But this means that the value of the case
expression in (3) also evaluates tovi. Hence, the values of
the two case expressions are equal.


